Чем отличается структура троостита отпуска от структуры троостита закалки

Опубликовано: 15.06.2025

Микроструктура мартенсита закалки. х. 500.| Кристаллическая решетка мартенсита.

Цементит в сорбите закалки имеет мелкопластинчатбе строение; твердость сорбита выше твердости перлита.

Структуры перлита, сорбита закалки и троостита закалки отличаются друг от друга только измельченностью пластинок цементита, по существу же они являются одним семейством пластинчатых структур перлита.

Изменение размера зерна в процессе перекристаллизации.

Сорбит бывает двух видов: сорбит закалки и сорбит отпуска. Сорбит закалки состоит из чередующихся пластинок феррита и цементита, но пластинки цементита в нем значительно-тоньше, чем в перлите. Сорбит тверже перлита, но обладает меньшей вязкостью. В сорбите отпуска частицы цементита имеют шарообразную форму. Троостит, так же как и сорбит, различается двух видов: троостит закалки и троостит отпуска. Троостит представляет механическую смесь пластинок феррита и цементита, но более тонких, чем в сорбите. Троостит обладает большей твердостью по сравнению с сорбитом, но меньшей вязкостью. В тро-остите отпуска цементит находится в виде шарообразных частиц.

Слабительное действие сорбитола (сорбита)

Сорбитол обладает ярко выраженным слабительным действием, увеличивающимся пропорционально принятому количеству в организм. Рекомендуемая суточная доза — 30-40 граммов в день (определяется индивидуально). Дозы в пределах 30-50 (опред. индивидуально) граммов вызывают метеоризм. Дозы свыше 45-50 граммов (опред. индивидуально) приводят к сильному слабительному воздействию, сопровождаемому метеоризмом.

Сорбитол используется как лекарственное средство для борьбы с запорами в слабительных препаратах в виде шоколадок и конфет.

Сорбитол можно использовать в качестве слабительного при пероральном или в виде клизмы. Сорбит работает как слабительное, втягивая воду в толстую кишку, стимулируя движения кишечника.[источник не указан 73 дня]

Отпущенный мартенсит

Когда мартенсит извлекают из закалочной ванны, его называют свежезакаленным мартенситом. Данные по твердости на рисунке 4 как раз относятся к свежезакаленному мартенситу. Большая проблема этого «свежего» мартенсита в том, что, если содержание углерода составляет больше чем 0,2-0,3 %, то сталь в этом состоянии является очень хрупкой. Эту хрупкость можно убирают за счет некоторой потери твердости, если закаленную сталь слегка нагреть. Этот процесс называется отпуском.

Поэтому закаленные стали почти всегда подвергают отпуску для повышения вязкости стали. Полученный мартенсит называют отпущенным мартенситом. Повышенная температура отпуска позволяет атомам углерода, которые «захвачены» в ОЦТ структуру, немного подвигаться. Это движение атомов дает два эффекта:
– дает возможность ОЦТ структуре измениться в ОЦК структуру;
– дает возможность образовываться очень маленьким частицам карбидов.

Кривые влияния.

В результате отпуска при 600 С образуется сорбит отпуска , феррито-цементитная смесь более крупная, чем троостит. Твердость еще более снижается.

Изменение размера зерна в процессе перекристаллизации.

Сорбит бывает двух видов: сорбит закалки и сорбит отпуска . Сорбит закалки состоит из чередующихся пластинок феррита и цементита, но пластинки цементита в нем значительно-тоньше, чем в перлите. Сорбит тверже перлита, но обладает меньшей вязкостью. В сорбите отпуска частицы цементита имеют шарообразную форму. Троостит, так же как и сорбит, различается двух видов: троостит закалки и троостит отпуска. Троостит представляет механическую смесь пластинок феррита и цементита, но более тонких, чем в сорбите. Троостит обладает большей твердостью по сравнению с сорбитом, но меньшей вязкостью. В тро-остите отпуска цементит находится в виде шарообразных частиц.

С другой стороны, уменьшение протяженности субграниц и преобразование фраг-ментированного сорбита отпуска в бесструктурную феррито-кар-бидную смесь повышает длительную пластичность стали.

Получающийся при высоком отпуске продукт распада мартенсита, называемый сорбитом отпуска С0) обладает максимальной для стали вязкостью, сочетающейся с удовлетворительными показателями прочности. Такой комплекс является идеальным для деталей машин, подвергающихся динамическим и циклическим нагрузкам. Благодаря этому преимуществу термическую обработку, сочетающую закалку и высокий отпуск, издавна называют улучшением.

При такой термической обработке, как правило, получается структура сорбита отпуска с достаточно хорошим комплексом механических свойств.

Разрушение диска первой ступени ротора среднего давления турбины К-500-240 после 83 тыс. ч работы.

Металлографическим исследованием разрушенного диска установлено, что микроструктура диска представляет собой сорбит отпуска как игольчатой ориентации, так и бесструктурной, т.е. имеет структуру, обычную для исходного состояния диска. При электронно-микроскопическом исследовании выявлена начальная стадия процессов возврата и рекристаллизации с появлением зародышей рекристаллизации, образовавшихся в результате коалесценции субзерен внутри бейнитных пластин и миграции субграниц. Таким образом, наблюдение структуры стали в просвечивающий электронный микроскоп показывает, что в металле протекали процессы, характерные для высокотемпературной ползучести.

При нагреве до 600 С происходит коагуляция карбидов и образуется структура сорбита отпуска . Структура сорбита состоит из феррита и мелких зерен цементита.

Можно ли выполнить отпуск стали в домашних условиях?

Чаще все термообработка распространяется на различные простые детали, домашнюю утварь — ножи, вилки, металлические чашки, детали автомобилей и так далее. Однако домашняя металлургия обладает множеством ограничений, о которых простой человек может не знать. Рассмотрим основные проблемы, с которым может столкнуться человек во время отпуска стали в домашних условиях:

  • Большинство домашних печей не могут выполнить нагрев до высоких температур. Поэтому в домашних условиях можно сделать только низкий или средний отпуск. Теоретически можно попытаться переоборудовать или «усилить» свою печь, чтобы повысить температуру нагрева, однако сделать это человеку без опыта будет сложно.
  • Для проведения термической обработки необходимо использовать защитную среду (масло, щелочи, селитра). Но каждое вещество имеет свои температурные особенности. Простой пример: соединения на основе селитры могут взрываться при нагреве до высоких температур, что может быть опасно для жизни, здоровья домашнего металлурга.
  • Выполнение отпуска без применения защитной среды может быть фатально для самого металла. Дело в том, что без использования защитной среды металл будет остывать быстро, что может повлиять на качестве стали (повышение хрупкости, образования изгибов, пластическая деформация, появление ржавчины).
  • Также не стоит забывать о низкотемпературной хрупкости первого рода (от 250 до 300 градусов). В случае неправильного температурного режима из-за нее может серьезно пострадать качество металла вплоть до полного разрушения сплава.

Структура мартенсита образуется при быстром охлаждении в результате перехода решетки твердого раствора у-железа ( аусте-нита) в решетку твердого раствора а-железа ( феррита) без выделения углерода из раствора. Переход у-железа в а-железо сопровождается изменением объемов кристаллических решеток, что вызывает появление внутренних, дополнительных напряжений. Мартенсит представляет собой пересыщенный раствор углерода в а-железе с искаженной кристаллической решеткой. Сплав со структурой мартенсита обладает большой твердостью и прочностью.

Схема бейнитного превращения.

Структура мартенсита после этих видов превращения различна.

Структура мартенсита представляет собой пластины в виде игл, ориентированных относительно старой фазы аустенита параллельно или под определенными углами.

Структура мартенсита образуется в результате перехода решетки твердого раствора у-железа ( аустенита) в решетку твердого раствора сс-железа ( феррита) без выделения углерода из раствора. Переход у-железа в а-железо сопровождается изменением объемов кристаллических решеток, что вызывает появление внутренних дополнительных напряжений. Мартенсит представляет собой пересыщенный твердый раствор углерода в а-железе с искаженной кристаллической решеткой. Сплав со структурой мартенсита обладает большой твердостью и прочностью.

Структура мартенсита характеризуется незначительным размером зерна, часто имеет игольчатое строение.

Структура мартенсита представляет собой пластины в виде игл, ориентированных относительно старой фазы аустенита параллельно или под определенными углами.

Структура мартенсита бывает разнообразной по виду в зависимости от состава стали и условий закалки.

Структура мартенсита при этом переходит в троосто-сорбитные формы и далее в аустенит. Температура контакта резца со стружкой при выделении значительного количества тепла настолько высока, что развиваются молекулярные силы слипания ( адгезии), особенно со стороны стружки, и наблюдается оплавление тонких слоев. При этом размягчившиеся поверхностные слои обработанной поверхности и лунки уносятся движущейся по передней поверхности резца стружкой.

Структура мартенсита , образова1вшегося при температуре выше комнатной, имеет игольчатые кристаллы без признаков внутреннего двойникования. Авторы указанной работы считают, что двойники, присутствующие в пластинах мартенсита, уменьшают число возможных систем скольжения и тем самым увеличивают прочность мартенсита. С последним выводом не согласны И. Н. Бо-гачев с сотрудниками , которые считают, что двойники дополнительно не упрочняют мартенсит сталей переходного класса.

Структура мартенсита отличается тонким блочным строением, что в значительной мере определяет высокое сопротивление закаленной стали пластической деформации.

Что такое отпускная хрупкость

Отпускная температура влияет на качество обработки — чем выше будет температура, тем выше будет качество обработки. Однако ученые-металлурги установили, что это правило имеет 2 исключения, когда повышение температуры приводит не к улучшению, а к ухудшению качества материала. Эти два исключения на практике часто называют островками отпускной хрупкости. К счастью, было придумано несколько эффективных, безопасных способов обойти эти островки, поэтому проблема отпускной способности не является значимой в современной металлургии. Рассмотрим каждый из островков по отдельности + узнаем о том, как их обойти.

Необратимая низкотемпературная хрупкость

Другое название — хрупкость первого рода. Возникает при длительной обработке материала при температуре от 250 до 300 градусов, а распространяется данная хрупкость на все типы стальных сплавов. Объяснение феномена: при нагреве в данном температурном диапазоне углерод начинает активно распределяться по поверхности кристаллической решетки. Однако распределение углерода происходит крайне неравномерно — это приводит к нарушению кристаллической структуры металла, что приводит к серьезному повышению хрупкости. Как ясно из названия, данная хрупкость является необратимой (то есть островки сохраняют стабильность в течение неограниченного времени, а испорченный материал годится только на переплавку). Методика борьбы с данной хрупкостью тривиальна — нужно использовать либо низкую, либо среднюю термическую обработку — но не «промежуточную» между ними.

Обратимая высокотемпературная хрупкость

Другое название — хрупкость второго рода. Возникает только при комбинации сразу трех факторов одновременно. Первый фактор — металл нагревается выше температуры 500 градусов (то есть данная хрупкость характерна для высокой отпускной обработки). Второй фактор — сталь является легированным сплавом с высоким содержанием хрома, марганца или никеля. Третий фактор — очень низкая скорость остывания. Объяснение феномена: при комбинации трех факторов также происходит неравномерное распределение атомов углерода, хрома, марганца и никеля, что приводит к нарушению кристаллической решетки сплава. Существует много способов борьбы с данной хрупкостью — рассмотрим два из них:

  • Способ №1: после образования хрупкости происходит повторный нагрев материала до заданной температуры — только нагрев осуществляется в масляной среде, а охлаждение металла после отпуска осуществляется очень быстро.
  • Способ №2: во время отпускной обработки в сплав дополнительно вносится вольфрам (около 1% от общей массы) либо молибден (0,3-0,4%) — после этого выполняется высокий отпуск по стандартной технологии.

Строение троостита отпуска ( рис. 191, б), как и троостита закалки, вследствие значительной дисперсности образовавшихся частиц феррита и цементита плохо выявляется при микроанализе; троостит наблюдается в виде сильно травящихся темных образований.

Строение троостита отпуска ( рис. 205, б) и троостита закалки вследствие значительной дисперсности образовавшихся частиц феррита и цементита плохо выявляется при микроанализе; тро-остит наблюдается в виде сильно травящихся темных образований.

Сорбит и троостит отпуска отличаются от одноименных закалочных структур тем, что цементит отпуска имеет зернистую, а не пластинчатую форму.

Сохранившаяся в троостите отпуска ориентировка по мартенситу в виде игольчатого строения отличает его от троостита закалки.

Таким образом, троостит отпуска является продуктом распада мартенсита. Он представляет собой высокодисперсную смесь частиц феррита, мельчайших округлых зерен и коротких пластинок цементита.

В результате отпущенный мартенсит превращается в троостит отпуска , при этом почти заканчивается выделение углерода из твердого раствора ( мартенситной основы) и снимается значительная часть искажений его решетки и внутренних напряжений.

При более высокой прочности ( ав1300 МПа) среднеуглеродистые стали со структурой троостита отпуска или мартенсита характеризуются пониженным сопротивлением распространению трещины. Кроме того, низкая пластичность сталей высокой прочности повышает их чувствительность к надрезам в наиболее напряженных зонах деталей. В результате в местах концентрации напряжений зарождаются усталостные трещины, быстро приводящие к поломке деталей. Вследствие повышенной чувствительности к надрезу происходит значительное рассеяние значений а и уменьшение а до ( 0 4 0 3) ав. Несущая способность деталей из легированных сталей в высокопрочном состоянии может быть ниже, чем горячекатаных углеродистых сталей.

Сорбит и троостит закалки имеют пластинчатое строение и отличаются этим от сорбита и троостита отпуска , имеющих зернистое строение цементита.

Заключение

Подведем итоги. Отпуск стали — это технологическая процедура, которая заключается в нагреве металла до определенной температуры с последующим остыванием в защитной среде. Эта обработка позволяет улучшить качество металла — повышение прочности, нормализация пластичности, улучшение физико-химических свойств материала. В зависимости от температуры различают несколько типов отпуска — высокий, средний, низкий. Высокотемпературная обработка — оптимальна, поскольку она позволяет выполнить не только диффузию углерода, но и рекристаллизацию, полигонизации материала.

Низкотемпературная технология подходит для обработки простых деталей, низкокачественных сплавов. Инструментальные стальные сплавы (с большим содержанием углерода) не подходят для стандартного отпуска — вместо него рекомендуется делать многоступенчатую закалку. Во время обработки нужно избегать островков отпускной хрупкости, которые могут серьезно ухудшить свойства стали.

Ввиду того что структурные превращения, происходящие при охлаждении стали, совершаются не мгновенно, то быстрым охлаждением они могут быть частично или полностью задержаны, так как при низких температурах подвижность атомов уменьшается. Увеличение скорости охлаждения приводит к возникновению переходных между аустенитом и перлитом структур; таких структур в зависимости от скорости охлаждения может быть много, наиболее-типичные из них получили названия мартенсита, троостита и сорбита.

Выше уже было сказано, что с увеличением скорости охлаждения критические точки стали понижаются. На фиг. 104 даны кривые охлаждения эвтектоидной стали для различных скоростей охлаждения. Замечательно, что при некоторой достаточно большой скорости охлаждения на кривой охлаждения появляется еще одна критическая точка при 240° — точка М. Дальнейшее увеличение скорости охлаждения приводит к тому, что на кривой охлаждения остается только одна критическая точка — точка М.

Переходные структуры стали

Изучение микроструктуры показывает, что сначала увеличение скорости охлаждения в соответствии с общей теорией кристаллизации приводит только к измельчению структуры — возникают структуры сорбита, затем троостита, отличающиеся от перлита своим более тонким строением. Появление на кривой охлаждения точки М означает, что превращение аустенита при высоких температурах Ar1, приводящее к возникновению структур перлитного типа, не заканчивается полностью, и при температуре точки М этот переохлажденный аустенит превращается в мартенсит. Превращение аустенита в мартенсит совершается очень быстро, поскольку при этом происходит только перестройка решетки гранецентрированной кубической (аустенит) в объемноцентрированную (мартенсит). Поэтому изменение скорости охлаждения к заметному смещению точки М не приводит. Механизм превращения аустенита в мартенсит описан в работах чл.-корр. АН России Г. В. Курдюмова.

Аустенит. Аустенитом называется твердый раствор на основе у-Fe. В углеродистой стали даже очень быстрым охлаждением нельзя зафиксировать структуру аустенита. Однако присутствие в сплаве специальных примесей, например марганца, способствует получению аустенитной структуры. На фиг. 106 дана микрофотография аустенитной структуры, полученной охлаждением в ледяной воде стали, содержащей 2,0% С и 2,2% Мn; температура нагрева образца перед охлаждением равна 1050°.

Переходные структуры стали

Аустенит характеризуется низким пределом упругости, большой вязкостью, хорошей сопротивляемостью удару и истиранию, максимальной по сравнению с другими структурами стали плотностью. Аустенит немагнитен и обладает минимальной по сравнению с другими структурами электропроводностью.

Кристаллическая решетка аустенита — куб с центрированными гранями, т. е. решетка, свойственная железу в модификации у; она составлена из атомов железа, между которыми расположены атомы углерода (твердый раствор внедрения).

Мартенсит. Мартенситная структура получается при весьма быстром охлаждении стали (несколько сот градусов в секунду). При такой скорости охлаждения превращение аустенита происходит при температурах ниже 350—300°, и возникает типичное для мартенсита игольчатое строение.

На фиг. 107 представлена структура мартенсита. Мартенсит обладает твердостью 600—700 по Бринелю, высоким пределом прочности, малой вязкостью и большой хрупкостью. Мартенсит магнитен; электропроводность стали, закаленной на мартенсит, значительно меньше, чем электропроводность медленно охлажденной (отожженной) стали. Работами советских ученых Н. Т. Гудцова, Г. В. Курдюмова и Н. Я. Селякова установлено, что мартенсит представляет собой пересыщенный твердый раствор углерода в x-Fe. За счет наличия в мартенсите углерода кристаллическая решетка мартенсита искажена и представляет собой тетрагональную объемноцентрированную решетку, в которую внедрены атомы углерода. Степень тетрагональности мартенсита (т. е. разница постоянных решетки а и с) зависит от количества содержащегося в нем углерода; в стали с 1,7% углерода отношение с:а достигает величины 1,08.

При образовании мартенситной структуры наблюдается изменение удельного объема стали в сторону увеличения, результатом чего являются внутренние напряжения в материале. Чем быстрее ведется охлаждение, чем выше температура, с которой начинается охлаждение и чем больше углерода содержится в стали, тем больше может быть увеличение удельного объема стали при закалке. Однако те же факторы — увеличение содержания углерода в стали, увеличение скорости охлаждения — могут привести к сохранению в структуре большего количества остаточного аустенита, т. е. фазы с минимальным удельным объемом. Цифры, иллюстрирующие взаимную связь между всеми этими факторами, даны в табл. 10.

Переходные структуры стали

Структура мартенсита является типичной для сильно закаленной стали. Поскольку мартенсит в стали является структурой метастабильной (т. е. нeустойчивой), то при нагреве (отпуске) закаленной стали происходит процесс выделения углерода из мартенсита и образование зерен цементита. Это приводит к возникновению структуры троостита отпуска и сорбита отпуска.

Троостит. Структура троостита закалки получается при менее быстром охлаждении, чем требуемое для получения мартенситной структуры.

Критическая точка А r, снижается до 500—550°. Подобная структура может быть также получена при нагреве закаленной на мартенсит стали до температуры ниже 400° (троостит отпуска — зернистого строения). Троостит менее хрупок и тверд, чем мартенсит.

Троостит представляет собой тонкодисперсную смесь цементита и феррита.

На фиг. 108 представлена структура быстроохлажденной стали (темные участки — троостит, светлые — мартенсит).

Переходные структуры стали

Сорбит. Сорбитная структура получается при еще меньшей скорости охлаждения стали (сорбит закалки — пластинчатого строения). Критическая точка Аr1 снижается незначительно. Сорбит может быть получен и при нагреве

мартенсита до 500—650° (сорбит отпуска — зернистого строения). Структура сорбита представлена на фиг. 109. Эта переходная между трооститом и перлитом структура получила название сорбита; она представляет собой различимую под микроскопом механическую смесь двух фаз — феррита и цементита.

Сорбит имеет повышенные предел прочности и твердость при сравнительно высоком пределе упругости.

Отпуск стали – это заключительная операция термической обработки от правильности проведения которой зависит качество детали. При отпуске закаленная сталь нагревается ниже нижней критической точки АС1, выдерживается при заданной температуре и охлаждается с определённой скоростью.

- перевести структуру стали в более равновесное состояние;

- уменьшить закалочные напряжения;

- получить оптимальные технологические свойства стали;

- обеспечить механические свойства, необходимые в условиях эксплуатации конкретной детали.

Отпуск проводится сразу после закалки стали, чтобы избежать разрушения стали от закалочных напряжений.

Режим отпуска определяется скоростью и температурой нагрева; временем выдержки в печи (см. табл. 1); скоростью охлаждения.

Скорость нагрева стали до температуры отпуска зависит от химического состава стали, размеров и формы обрабатываемых деталей, массы веса садки, типа нагревательного оборудования и т.д. В практике термообработки скорость нагрева конструкционных сталей определяется возможностями нагревательного оборудования.

Температура нагрева оказывает основное влияние на свойства стали при отпуске. С повышением температуры отпуска твёрдость и прочность уменьшаются, а пластичность и вязкость увеличиваются. Различают низкотемпературный (низкий) отпуск, среднетемпературный (средний) и высокотемпературный (высокий) отпуск.

Таблица 1 - Время выдержки в печи при отпуске или низкотемпературном отжиге

Условная толщина детали, мм Время выдержки, мин, при температуре
< 300 0 С 300-400 0 С > 400 0 С
До 20

Низкий отпуск проводится при температуре 150…250ºС. При этих температурах подвижность атомов всех компонентов стали невысока, поэтому начинающийся процесс распада мартенсита закалки с выделением мельчайших частиц цементита протекает в незначительной степени и твёрдость стали остается высокой (снижается всего на 1…5 HRC). Образующаяся в результате низкого отпуска структура называется мартенситом отпуска. По сравнению с мартенситом закалки у мартенсита отпуска заметно снижаются закалочные напряжения и склонность стали к хрупкому разрушению; пластичность и вязкость немного выше. Так как низкий отпуск почти не снижает твёрдость стали, полученную при закалке, его применяют для изделий, которым в условиях эксплуатации необходима высокая твёрдость и износостойкость, например, режущий и мерительный инструмент; подшипники качения; цементованные, цианированные и поверхностно закаленные детали (зубья шестерен, шейки коленчатых валов, кулачки распредвалов и др.).

Фактически структурные изменения, происходящие при низком отпуске, малозаметны под микроскопом, они выявляются рентгеноструктурным анализом. Но мартенсит отпуска травится кислотами более интенсивно, чем мартенсит закалки, потому кристаллы мартенсита отпуска под микроскопом кажутся более темными.

Мартенсит закалки Мартенсит отпуска

На практике температуру низкого отпуска иногда определяют «на глаз» - по цветам побежалости, т.е. по цвету зачищенной поверхности стали. Образующаяся на этой поверхности оксидная плёнка изменяет свой цвет в зависимости от температуры нагрева стали. Каждому цвету побежалости соответствует определенная температура (см. плакат «Цвета побежалости – температура ºС»). Часто этим методом пользуются при самоотпуске деталей и инструмента после местной закалки, например, зубила, кувалды, молотка, лемеха.

Средний отпуск проводится при температуре 300…500ºС. Такой нагрев закаленной стали почти полностью снимает её внутренние напряжения и приводит к диффузионному распаду мартенсита закалки на мелкодисперсную феррито-цементную смесь, называемую трооститом отпуска. Троостит отпуска характеризуется следующими механическими свойствами:




- относительно высокой твёрдостью (40…52 HRC);

- высоким значением пределов упругости и выносливости при достаточной прочности;

- большой релаксационной стойкостью.

Средний отпуск применяется для деталей, которые в условиях эксплуатации должны иметь максимально упругие свойства при относительно высокой твердости, например, пружины, рессоры, торсионные валы, штамповый и ударный инструмент. Следует отметить, что частицы цементита в троостите отпуска всегда имеют зернистую форму, а в троостите, образующемся при охлаждении аустенита – пластинчатую. Именно этим и объясняется более высокий комплекс механических свойств троостита отпуска.

Так как троостит отпуска состоит из дисперсных частиц феррита и цементита, то под металлографическим микроскопом при обычных увеличениях он четко не выявляется, а наблюдается в виде сильно травящихся темных образований.

Высокий отпуск проводят при температуре 500…680ºС. При этом полностью снимаются внутренние напряжения стали и происходит не только распад мартенсита закалки на феррито-цементитную смесь, но и коагуляция (укрупнение) и сфероидизация (округление) цементитных частиц. Зерна феррита также укрупняются и становятся более равновесными. Такая структура называется сорбитом отпуска.

С укрупнением цементитных частиц заметно уменьшаются твердость (до 15…35 HRC в зависимости от химического состава стали и температуры нагрева) и прочность; пластичность и вязкость достигают максимальных значений. Поэтому высокому отпуску подвергают детали, работающие при ударных и переменных нагрузках: шатуны, силовые шпильки, балансиры, передние оси автомобилей, болты и др. Сорбит отпуска как феррито-цементитная смесь отчетливо выявляется под металлографическим микроскопом вследствие большей величины частиц феррита и цементита, чем в троостите.

Сорбит отпуска по сравнению с сорбитом, полученным при охлаждении аустенита, обеспечивает для среднеуглеродистой конструкционной стали наилучшее соотношение прочности, пластичности и вязкости. Это объясняется зернистой формой цементитных частиц в сорбите отпуска. В связи с этим термообработку на сорбит отпуска (закалку с последующим высоким отпуском) назвали улучшением.

Троостит отпуска Сорбит отпуска

Продолжительность отпуска зависит от температуры отпуска, химического состава стали, габаритов и массы веса садки, оборудования для нагрева и состовляет от нескольких минут до нескольких часов (см. табл. 1).

Скорость охлаждения температуры нагрева влияет на тепловые напряжения. Чем медленнее охлаждение, тем меньше тепловые напряжения и коробление, поэтому большинство сталей охлаждают после отпуска на воздухе.

Таким образом, выбор вида и режима отпуска для конкретной детали определяется её назначением и требованиями условий ее эксплуатации.

Целью закалки и отпуска стали является повышение твердости и прочности. Закалка и отпуск стали необходимы для очень многих деталей и изделий. Закалка основана на перекристаллизации при нагреве и предотвращении перехода аустенита в перлит путем быстрого охлаждения. Закаленная сталь имеет неравновесную структуру мартенсита, троостита или сорбита.

Чаще всего сталь резко охлаждают на мартенсит. Для смягчения действия закалки сталь отпускают, нагревая до температуры ниже точки А1. При отпуске структура стали из мартенсита закалки переходит мартенсит отпуска, троостит отпуска, сорбит отпуска.

Закалка стали. Температура нагрева стали при закалке та же, что и при полном отжиге: для доэвтектоидной стали на 30—50 °С выше точки Ас3, для заэвтектоидной — на 30—50° выше точки Aс1. При нагреве доэвтектоидной стали до температуры между точками Ас1 и Ac3 (неполная закалка) в структуре быстро охлажденной стали наряду с закаленными участками будет присутствовать нерастворенный при нагреве (в аустените) феррит, резко снижающий твердость и прочность. Поэтому для доэвтектоидной стали обязательна полная закалка с нагревом выше точки Ас3.

В заэвтектоидной стали избыточной фазой является цементит, который по твердости не уступает мартенситу и даже превосходит его, поэтому сталь достаточно нагреть на 30—50 °С выше точки Ас1.

Нагревать заготовки, особенно крупные, нужно постепенно во избежание местных напряжений и трещин, а время выдержки нагретых заготовок должно быть достаточным, чтобы переход в структуру аустенита полностью завершился.

Скорость охлаждения заготовок при закалке должна быть такой, чтобы получить заданную структуру. Критическая скорость закалки изменяется в широких пределах в зависимости от наличия легирующих компонентов в стали. Для простых сплавов железо—углерод эта скорость очень высока. Присутствие в стали кремния и марганца облегчает закалку на мартенсит, так как для такой стали С-образные кривые на диаграмме изотермического превращения аустенита будут сдвинуты вправо и критическая скорость закалки понижается.

Наиболее распространено охлаждение заготовок погружением их в воду, в щелочные растворы воды, в масло, расплавленные соли и т. д. При этом сталь закаливается на мартенсит или на бейнит.

При закалке применяют различные способы охлаждения в зависимости от марки стали, формы и размеров заготовки.


Простую закалку в одном охладителе (чаще всего в воде или водных растворах) выполняют, погружая в него заготовки до полного охлаждения. На рис. 2 режим охлаждения при такой закалке характеризует кривая 1.

Для получения наибольшей глубины закаленного слоя применяют охлаждение при интенсивном обрызгивании.

Прерывистой закалкой называют такую, при которой заготовку охлаждают последовательно в двух средах: первая среда — охлаждающая жидкость (обычно вода), вторая — воздух или масло (см. кривую 2 на рис. 2). Резкость такой закалки меньше, чем предыдущей. Рис. 2.

При ступенчатой закалке заготовку быстро погружают в соляной расплав и охлаждают до температуры несколько выше Мн. Выдержка обеспечивает выравнивание температуры от поверхности к сердцевине заготовки, что уменьшает напряжения, возникающие при мартенситном превращении; затем заготовку охлаждают на воздухе (кривая 3 на рис. 2).

Изотермическая закалка (закалка в горячих средах) основана на изотермическом распадении аустенита. Охлаждение ведется до температуры несколько выше начала мартенситного превращения (200—300 °С) в зависимости от марки стали. В качестве охладителя используют соленые расплавы или масло, нагретое до 200—250 °С. При температуре горячей ванны заготовка выдерживается продолжительное время, пока пройдет инкубационный период и период превращения аустенита (кривая 4 на рис. 2). В результате получается структура бейнита, по твердости близкая к мартенситу, но более вязкая и пластичная. Последующее охлаждение производится на воздухе.

При изотермической закалке вначале требуется быстрое охлаждение со скоростью не менее критической, чтобы избежать распадения аустенита. Следовательно, по этому методу можно закаливать лишь небольшие (диаметром примерно до 8 мм) заготовки из углеродистой стали, так как массивные заготовки не удается быстро охладить. Это не относится однако к легированным сталям, большинство марок которых имеют значительно меньшие критические скорости закалки. Большим преимуществом изотермической закалки является возможность рихтовки (выправления искривлений) заготовок во время инкубационного периода превращения аустенита (который длится несколько минут), когда сталь еще пластична.

Закалка при помощи газовой горелки. Кислородно-ацетиленовое пламя газовой горелки с температурой около 3200 °С направляется на поверхность закаливаемой заготовки и быстро нагревает ее поверхностный слой до температуры выше критической. Вслед за горелкой перемещается трубка, из которой на поверхность заготовки направляется струя воды, закаливая нагретый слой. Этот способ применяется для изделий с большой поверхностью (например, для прокатных валков, зубьев больших шестерен и т. д.).

Закалка токами высокой частоты по методу В. П. Вологдина нашла очень широкое применение в промышленности, так как отличается высокой производительностью, легко поддается автоматизации.

Обработка холодом. Этот метод применяется для повышения твердости стали путем перевода остаточного аустенита закаленной стали в мартенсит. Холодом обрабатывают углеродистую сталь, содержащую больше 0,5 % С, у которой температура конца мартен-ситного превращения находится ниже 00 С, а также легированную сталь (например, быстрорежущую).

Отпуск стали. Отпуск смягчает действие закалки, снимает или уменьшает остаточные напряжения, повышает вязкость, уменьшает твердость и хрупкость стали. Отпуск производится путем нагрева заготовок до температуры ниже критической; при этом в зависимости от температуры могут быть получены структуры мартенсита, троостита или сорбита отпуска.

При низком отпуске (нагрев до температуры 150—200 °С) в структуре стали в основном остается мартенсит, который однако имеет другую решетку, как сказано выше. Кроме того, начинается выделение карбидов железа из пересыщенного твердого раствора углерода в -железе и начальное скопление их небольшими группами. Это влечет за собой некоторое уменьшение твердости и увеличение вязкости стали, а также уменьшение внутренних напряжений в заготовках. Для низкого отпуска, заготовки выдерживают в течение определенного времени обычно в масляных или солевых ваннах. Если для низкого отпуска заготовки нагревают в атмосфере воздуха, то для контроля температуры часто пользуются цветами побежалости, появляющимися на зачищенной поверхности заготовки. Появление этих цветов связано с интерференцией белого цвета в пленках оксида железа, возникающих на поверхности заготовки при ее нагреве. Для углеродистой стали в интервале температур от 220 до 330 °С в зависимости от толщины пленки цвет изменяется от светло-желтого до серого. Для легированной стали соответствующие температуры выше. Низкий отпуск применяют для режущего инструмента из углеродистых и легированных сталей, измерительного инструмента, цементированных заготовок, а также других изделий, работающих в условиях трения на износ.

При среднем (нагрев в пределах 300—500 °С) и высоком (500—700 °С) отпуске структура мартенсита переходит соответственно в структуру троостита или сорбита. Чем выше температура отпуска, тем меньше твердость отпущенной стали и тем больше ее вязкость. При высоком отпуске сталь получает наилучшее сочетание механических свойств: повышенные прочность, вязкость и пластичность; поэтому закалку на мартенсит с последующим высоким отпуском называют улучшением стали. Средний отпуск применяют при производстве кузнечных штампов, пружин, рессор, а высокий—для многих деталей, подверженных действию высоких напряжений (например, осей автомобилей, шатунов двигателей).

Микроструктура мартенсита закалки. х. 500.| Кристаллическая решетка мартенсита.

Цементит в сорбите закалки имеет мелкопластинчатбе строение; твердость сорбита выше твердости перлита.

Структуры перлита, сорбита закалки и троостита закалки отличаются друг от друга только измельченностью пластинок цементита, по существу же они являются одним семейством пластинчатых структур перлита.

Изменение размера зерна в процессе перекристаллизации.

Сорбит бывает двух видов: сорбит закалки и сорбит отпуска. Сорбит закалки состоит из чередующихся пластинок феррита и цементита, но пластинки цементита в нем значительно-тоньше, чем в перлите. Сорбит тверже перлита, но обладает меньшей вязкостью. В сорбите отпуска частицы цементита имеют шарообразную форму. Троостит, так же как и сорбит, различается двух видов: троостит закалки и троостит отпуска. Троостит представляет механическую смесь пластинок феррита и цементита, но более тонких, чем в сорбите. Троостит обладает большей твердостью по сравнению с сорбитом, но меньшей вязкостью. В тро-остите отпуска цементит находится в виде шарообразных частиц.

Слабительное действие сорбитола (сорбита)

Сорбитол обладает ярко выраженным слабительным действием, увеличивающимся пропорционально принятому количеству в организм. Рекомендуемая суточная доза — 30-40 граммов в день (определяется индивидуально). Дозы в пределах 30-50 (опред. индивидуально) граммов вызывают метеоризм. Дозы свыше 45-50 граммов (опред. индивидуально) приводят к сильному слабительному воздействию, сопровождаемому метеоризмом.

Сорбитол используется как лекарственное средство для борьбы с запорами в слабительных препаратах в виде шоколадок и конфет.

Сорбитол можно использовать в качестве слабительного при пероральном или в виде клизмы. Сорбит работает как слабительное, втягивая воду в толстую кишку, стимулируя движения кишечника.[источник не указан 73 дня]

Отпущенный мартенсит

Когда мартенсит извлекают из закалочной ванны, его называют свежезакаленным мартенситом. Данные по твердости на рисунке 4 как раз относятся к свежезакаленному мартенситу. Большая проблема этого «свежего» мартенсита в том, что, если содержание углерода составляет больше чем 0,2-0,3 %, то сталь в этом состоянии является очень хрупкой. Эту хрупкость можно убирают за счет некоторой потери твердости, если закаленную сталь слегка нагреть. Этот процесс называется отпуском.

Поэтому закаленные стали почти всегда подвергают отпуску для повышения вязкости стали. Полученный мартенсит называют отпущенным мартенситом. Повышенная температура отпуска позволяет атомам углерода, которые «захвачены» в ОЦТ структуру, немного подвигаться. Это движение атомов дает два эффекта:
– дает возможность ОЦТ структуре измениться в ОЦК структуру;
– дает возможность образовываться очень маленьким частицам карбидов.

Кривые влияния.

В результате отпуска при 600 С образуется сорбит отпуска , феррито-цементитная смесь более крупная, чем троостит. Твердость еще более снижается.

Изменение размера зерна в процессе перекристаллизации.

Сорбит бывает двух видов: сорбит закалки и сорбит отпуска . Сорбит закалки состоит из чередующихся пластинок феррита и цементита, но пластинки цементита в нем значительно-тоньше, чем в перлите. Сорбит тверже перлита, но обладает меньшей вязкостью. В сорбите отпуска частицы цементита имеют шарообразную форму. Троостит, так же как и сорбит, различается двух видов: троостит закалки и троостит отпуска. Троостит представляет механическую смесь пластинок феррита и цементита, но более тонких, чем в сорбите. Троостит обладает большей твердостью по сравнению с сорбитом, но меньшей вязкостью. В тро-остите отпуска цементит находится в виде шарообразных частиц.

С другой стороны, уменьшение протяженности субграниц и преобразование фраг-ментированного сорбита отпуска в бесструктурную феррито-кар-бидную смесь повышает длительную пластичность стали.

Получающийся при высоком отпуске продукт распада мартенсита, называемый сорбитом отпуска С0) обладает максимальной для стали вязкостью, сочетающейся с удовлетворительными показателями прочности. Такой комплекс является идеальным для деталей машин, подвергающихся динамическим и циклическим нагрузкам. Благодаря этому преимуществу термическую обработку, сочетающую закалку и высокий отпуск, издавна называют улучшением.

При такой термической обработке, как правило, получается структура сорбита отпуска с достаточно хорошим комплексом механических свойств.

Разрушение диска первой ступени ротора среднего давления турбины К-500-240 после 83 тыс. ч работы.

Металлографическим исследованием разрушенного диска установлено, что микроструктура диска представляет собой сорбит отпуска как игольчатой ориентации, так и бесструктурной, т.е. имеет структуру, обычную для исходного состояния диска. При электронно-микроскопическом исследовании выявлена начальная стадия процессов возврата и рекристаллизации с появлением зародышей рекристаллизации, образовавшихся в результате коалесценции субзерен внутри бейнитных пластин и миграции субграниц. Таким образом, наблюдение структуры стали в просвечивающий электронный микроскоп показывает, что в металле протекали процессы, характерные для высокотемпературной ползучести.

При нагреве до 600 С происходит коагуляция карбидов и образуется структура сорбита отпуска . Структура сорбита состоит из феррита и мелких зерен цементита.

Можно ли выполнить отпуск стали в домашних условиях?

Чаще все термообработка распространяется на различные простые детали, домашнюю утварь — ножи, вилки, металлические чашки, детали автомобилей и так далее. Однако домашняя металлургия обладает множеством ограничений, о которых простой человек может не знать. Рассмотрим основные проблемы, с которым может столкнуться человек во время отпуска стали в домашних условиях:

  • Большинство домашних печей не могут выполнить нагрев до высоких температур. Поэтому в домашних условиях можно сделать только низкий или средний отпуск. Теоретически можно попытаться переоборудовать или «усилить» свою печь, чтобы повысить температуру нагрева, однако сделать это человеку без опыта будет сложно.
  • Для проведения термической обработки необходимо использовать защитную среду (масло, щелочи, селитра). Но каждое вещество имеет свои температурные особенности. Простой пример: соединения на основе селитры могут взрываться при нагреве до высоких температур, что может быть опасно для жизни, здоровья домашнего металлурга.
  • Выполнение отпуска без применения защитной среды может быть фатально для самого металла. Дело в том, что без использования защитной среды металл будет остывать быстро, что может повлиять на качестве стали (повышение хрупкости, образования изгибов, пластическая деформация, появление ржавчины).
  • Также не стоит забывать о низкотемпературной хрупкости первого рода (от 250 до 300 градусов). В случае неправильного температурного режима из-за нее может серьезно пострадать качество металла вплоть до полного разрушения сплава.

Структура мартенсита образуется при быстром охлаждении в результате перехода решетки твердого раствора у-железа ( аусте-нита) в решетку твердого раствора а-железа ( феррита) без выделения углерода из раствора. Переход у-железа в а-железо сопровождается изменением объемов кристаллических решеток, что вызывает появление внутренних, дополнительных напряжений. Мартенсит представляет собой пересыщенный раствор углерода в а-железе с искаженной кристаллической решеткой. Сплав со структурой мартенсита обладает большой твердостью и прочностью.

Схема бейнитного превращения.

Структура мартенсита после этих видов превращения различна.

Структура мартенсита представляет собой пластины в виде игл, ориентированных относительно старой фазы аустенита параллельно или под определенными углами.

Структура мартенсита образуется в результате перехода решетки твердого раствора у-железа ( аустенита) в решетку твердого раствора сс-железа ( феррита) без выделения углерода из раствора. Переход у-железа в а-железо сопровождается изменением объемов кристаллических решеток, что вызывает появление внутренних дополнительных напряжений. Мартенсит представляет собой пересыщенный твердый раствор углерода в а-железе с искаженной кристаллической решеткой. Сплав со структурой мартенсита обладает большой твердостью и прочностью.

Структура мартенсита характеризуется незначительным размером зерна, часто имеет игольчатое строение.

Структура мартенсита представляет собой пластины в виде игл, ориентированных относительно старой фазы аустенита параллельно или под определенными углами.

Структура мартенсита бывает разнообразной по виду в зависимости от состава стали и условий закалки.

Структура мартенсита при этом переходит в троосто-сорбитные формы и далее в аустенит. Температура контакта резца со стружкой при выделении значительного количества тепла настолько высока, что развиваются молекулярные силы слипания ( адгезии), особенно со стороны стружки, и наблюдается оплавление тонких слоев. При этом размягчившиеся поверхностные слои обработанной поверхности и лунки уносятся движущейся по передней поверхности резца стружкой.

Структура мартенсита , образова1вшегося при температуре выше комнатной, имеет игольчатые кристаллы без признаков внутреннего двойникования. Авторы указанной работы считают, что двойники, присутствующие в пластинах мартенсита, уменьшают число возможных систем скольжения и тем самым увеличивают прочность мартенсита. С последним выводом не согласны И. Н. Бо-гачев с сотрудниками , которые считают, что двойники дополнительно не упрочняют мартенсит сталей переходного класса.

Структура мартенсита отличается тонким блочным строением, что в значительной мере определяет высокое сопротивление закаленной стали пластической деформации.

Что такое отпускная хрупкость

Отпускная температура влияет на качество обработки — чем выше будет температура, тем выше будет качество обработки. Однако ученые-металлурги установили, что это правило имеет 2 исключения, когда повышение температуры приводит не к улучшению, а к ухудшению качества материала. Эти два исключения на практике часто называют островками отпускной хрупкости. К счастью, было придумано несколько эффективных, безопасных способов обойти эти островки, поэтому проблема отпускной способности не является значимой в современной металлургии. Рассмотрим каждый из островков по отдельности + узнаем о том, как их обойти.

Необратимая низкотемпературная хрупкость

Другое название — хрупкость первого рода. Возникает при длительной обработке материала при температуре от 250 до 300 градусов, а распространяется данная хрупкость на все типы стальных сплавов. Объяснение феномена: при нагреве в данном температурном диапазоне углерод начинает активно распределяться по поверхности кристаллической решетки. Однако распределение углерода происходит крайне неравномерно — это приводит к нарушению кристаллической структуры металла, что приводит к серьезному повышению хрупкости. Как ясно из названия, данная хрупкость является необратимой (то есть островки сохраняют стабильность в течение неограниченного времени, а испорченный материал годится только на переплавку). Методика борьбы с данной хрупкостью тривиальна — нужно использовать либо низкую, либо среднюю термическую обработку — но не «промежуточную» между ними.

Обратимая высокотемпературная хрупкость

Другое название — хрупкость второго рода. Возникает только при комбинации сразу трех факторов одновременно. Первый фактор — металл нагревается выше температуры 500 градусов (то есть данная хрупкость характерна для высокой отпускной обработки). Второй фактор — сталь является легированным сплавом с высоким содержанием хрома, марганца или никеля. Третий фактор — очень низкая скорость остывания. Объяснение феномена: при комбинации трех факторов также происходит неравномерное распределение атомов углерода, хрома, марганца и никеля, что приводит к нарушению кристаллической решетки сплава. Существует много способов борьбы с данной хрупкостью — рассмотрим два из них:

  • Способ №1: после образования хрупкости происходит повторный нагрев материала до заданной температуры — только нагрев осуществляется в масляной среде, а охлаждение металла после отпуска осуществляется очень быстро.
  • Способ №2: во время отпускной обработки в сплав дополнительно вносится вольфрам (около 1% от общей массы) либо молибден (0,3-0,4%) — после этого выполняется высокий отпуск по стандартной технологии.

Строение троостита отпуска ( рис. 191, б), как и троостита закалки, вследствие значительной дисперсности образовавшихся частиц феррита и цементита плохо выявляется при микроанализе; троостит наблюдается в виде сильно травящихся темных образований.

Строение троостита отпуска ( рис. 205, б) и троостита закалки вследствие значительной дисперсности образовавшихся частиц феррита и цементита плохо выявляется при микроанализе; тро-остит наблюдается в виде сильно травящихся темных образований.

Сорбит и троостит отпуска отличаются от одноименных закалочных структур тем, что цементит отпуска имеет зернистую, а не пластинчатую форму.

Сохранившаяся в троостите отпуска ориентировка по мартенситу в виде игольчатого строения отличает его от троостита закалки.

Таким образом, троостит отпуска является продуктом распада мартенсита. Он представляет собой высокодисперсную смесь частиц феррита, мельчайших округлых зерен и коротких пластинок цементита.

В результате отпущенный мартенсит превращается в троостит отпуска , при этом почти заканчивается выделение углерода из твердого раствора ( мартенситной основы) и снимается значительная часть искажений его решетки и внутренних напряжений.

При более высокой прочности ( ав1300 МПа) среднеуглеродистые стали со структурой троостита отпуска или мартенсита характеризуются пониженным сопротивлением распространению трещины. Кроме того, низкая пластичность сталей высокой прочности повышает их чувствительность к надрезам в наиболее напряженных зонах деталей. В результате в местах концентрации напряжений зарождаются усталостные трещины, быстро приводящие к поломке деталей. Вследствие повышенной чувствительности к надрезу происходит значительное рассеяние значений а и уменьшение а до ( 0 4 0 3) ав. Несущая способность деталей из легированных сталей в высокопрочном состоянии может быть ниже, чем горячекатаных углеродистых сталей.

Сорбит и троостит закалки имеют пластинчатое строение и отличаются этим от сорбита и троостита отпуска , имеющих зернистое строение цементита.

Заключение

Подведем итоги. Отпуск стали — это технологическая процедура, которая заключается в нагреве металла до определенной температуры с последующим остыванием в защитной среде. Эта обработка позволяет улучшить качество металла — повышение прочности, нормализация пластичности, улучшение физико-химических свойств материала. В зависимости от температуры различают несколько типов отпуска — высокий, средний, низкий. Высокотемпературная обработка — оптимальна, поскольку она позволяет выполнить не только диффузию углерода, но и рекристаллизацию, полигонизации материала.

Низкотемпературная технология подходит для обработки простых деталей, низкокачественных сплавов. Инструментальные стальные сплавы (с большим содержанием углерода) не подходят для стандартного отпуска — вместо него рекомендуется делать многоступенчатую закалку. Во время обработки нужно избегать островков отпускной хрупкости, которые могут серьезно ухудшить свойства стали.

Читайте также: